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A Critical Review of Statistical Methods for Differential Analysis of 2-sample 
Microarrays 
 

The advent of microarray technology has made it possible to study the variation 
of expression for many genes simultaneously. The most common types of microarray 
experiments involve the comparison of gene expression across two or more kinds of 
tissue samples or of samples obtained under different experimental conditions.  The 
analysis of gene expression data can be done from various levels of complexity: 1) at the 
level of single genes, where one seeks to determine whether a particular gene is 
differentially expressed under control and experimental conditions; 2) at the level of 
multiple genes, where attempts to classify genes into known classes (discriminant 
analysis/supervised learning) or to identify new or unknown classes (cluster 
analysis/unsupervised learning) are made through the analysis of common functionalities, 
interactions, regulation, etc.; and 3) at the systemic level, where the goal is to identify 
underlying gene and protein networks responsible for the patterns observed (1). This 
paper focuses on the first level of analysis. 

One of the major goals of microarray data analysis is the identification of genes 
that are differentially expressed across two or more kinds of tissue samples or samples 
obtained under different experimental conditions. Gene expression patterns are thought to 
be different for various tissue types and for tissues at various stages of development and 
disease states. Genes that show differential expression between diseased tissue and 
normal tissue will allow for the identification of biomarkers for disease class predictions 
as well as the ability to fine-scale predictions of drug responses. Hence, a large number of 
statistical methods that will allow the researcher to systematically assess and measure the 
significance of any observed changes in gene expression levels have been proposed. In 
this paper, I will critically review some of the methods and modeling approaches. 
Clearly, the generation of experimental data is not enough; one must be able to sift 
through the large volume and substantial variation of the data and to extract biological 
information that is meaningful to the study. One of the major tasks of this paper is to 
compare and contrast the underlying assumptions, strengths, and weaknesses of each 
statistical method, with the recognition that different methods are suitable for different 
questions and types of analyses. 

 
Expression Ratios and the fold-change approach 

To illustrate the application of the various statistical methods discussed in this 
paper, I will take as my central example a hypothetical experiment involving the 
comparison of gene activity in a tumor versus a normal tissue.  To investigate any 
changes in gene expression levels of some set of genes of interest, the scientist will need 
to position known DNA base sequences of each gene of interest into a pre-specified 
position on the microarray plates. Tumor cells will then be hybridized onto the plate, and 
these cells will generate messenger RNA’s (mRNA) in proportion to the gene’s actual 
activity in the cell. One can then visualize the expression levels of each gene by using a 
red dye to depict the effect the scientist is interested in and a green dye to measure any 
background activity and serve as a control. A differential expression ratio R/G can be 
derived for each spot. After hybridization, a number of preprocessing steps usually 
follow, such as dimension reduction, data normalization and data transformation to adjust 
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for any systemic variations or dye bias that may have occurred during the course of the 
experiment (2). Often, the logarithms of the expression ratios rather than the ratios 
themselves are used, because log ratios are easier to model and interpret. For example, 
taking the base2 logarithm of the expression ratios converts the multiplicative effect of 
the ratios into additive effects that allow us to more easily interpret the results. A gene 
that is upregulated by a factor of 2 has a log2(ratio) of 1, a gene downregulated by a 
factor of 2 has a log2(ratio) of -1, and a gene expressed at a constant level has a 
log2(ratio) of 0. One can also take the natural log or base10 log of the expression ratios, 
and the choice of which base to use depends on the researcher, as long as s/he is 
consistent (3).  

Initially, measurements of differential expression were assessed simply by 
comparing the ratio of expression levels between the two conditions, a method known as 
the fold change approach. Genes with ratios above a fixed cut-off k (that is, those whose 
expression underwent a k-fold change) were said to be differentially expressed. However, 
this method has been proven to be unreliable because it fails to take into account 
measurement error (variance). For example, an excess of low-intensity genes may be 
mistakenly identified as differentially expressed because their fold-change values have a 
larger variance than the fold-change values of high intensity genes. The fold-change 
approach will also fail to find genes that show a highly reproducible but small difference 
in relative expression values. Methods that take variability into account are therefore 
preferred and have been found to be considerably more reliable than the fold-change 
approach (4). 

Li and Wong (5) introduced a more sophisticated fold-change approach to 
analyzing oligonucleotide array data. They first fit a model that accounts for random, 
array- and probe-specific noise, and then evaluated whether the 90% confidence interval 
for each gene’s fold-change excludes 1.0. Unlike standard fold change approaches, this 
method incorporates available information about variability in the gene-expression 
measurements. However, because the error model is fitted to the entire data set, it can 
suffer when the data set is either too small or too heterogeneous. Other model-based 
methods designed for two-color arrays (6) also incorporate data-derived estimates of 
variation. However, before I move on to discuss the various statistical methods that have 
been proposed to measure differential expression, I will first address the problem of 
multiple testing and the evaluation of significance. 

 
Significance and the problem of multiple testing 

Regardless of the test statistic used, one needs to convert it to a p-value to 
determine its significance.  Standard methods for computing p-values often employ the 
use of a statistical distribution table that lists the threshold value of the test statistic 
needed to determine significance.  However, these tabulated values rely on the 
assumption that the data are sampled from normal populations with equal variances. 
Permutation tests, which are carried out by repeatedly shuffling the samples’ class labels 
and computing t statistics for the genes in the shuffled data enables one to assess 
significance without assuming normality.  Unfortunately, permutation tests are time- and 
effort-consuming; among its disadvantages are the complexity of its derivation and the 
requirement that the size of the dataset be large enough to allow for a sufficient number 
of distinct permutations to be obtained (1).   
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The issue of multiple testing is crucial in the analysis of microarrays as most 
microarray experiments often monitor the expression levels of thousands of genes, 
requiring that thousands of statistical tests to be computed. If we are to simply assume a 
standard p-value for every experiment, we run the risk of accumulating large numbers of 
false positive results.  To illustrate, if one uses a p-value equal to 0.01 to monitor the 
expression levels of 5000 genes, one should expect a false positive error rate on the order 
of 50 genes, which is in most cases, an unacceptably high false positive rate. What 
follows is a brief discussion of the methods that have been proposed to address the issue 
of multiple testing. 
Family-wise error-rate control 

One approach to multiple testing is to control the family-wise error rate (FWER), 
which is the overall probability that at least one gene is incorrectly identified as 
differentially expressed over a number of statistical tests. One way to control for FWER 
is to increase the stringency applied to each individual test. This can be done by 
performing a Bonferroni correction, where the desired significance level is divided by the 
total number of tests conducted. Unfortunately, standard Bonferroni corrections assume 
independence of the different tests and an acceptable FWER could be achieved for 
microarray data only if the Bonferroni threshold is set at a very stringent level (7). Such 
stringency often results in the non-identification of any genes as differentially expressed.   
A step-down correction method was designed by Westfall and Young (8), and this 
method allows for dependence between the different tests, but can still be overly 
restrictive in some cases. Permutation-based one-step correction procedures have also 
been proposed as alternatives to the Bonferonni correction.  The latter tests have been 
found to perform better compared to the standard Bonferroni, although a disadvantage is 
their computational complexity relative to the Bonferroni procedure.  
False-discovery-rate control 

For microarray studies that focus on finding sets of predictive genes, an 
alternative approach to multiple testing considers the false discovery rate (FDR), which is 
the probability that a given gene identified as differentially expressed is a false positive. 
The FDR is typically computed after a list of differentially expressed genes has been 
generated (9). Unlike a significance level, which is determined before looking at the data, 
FDR is a post-data measure of confidence. It uses information available in the data to 
estimate the proportion of false positive results that have occurred.  A simple method for 
bounding the FDR is proposed by Benjamini and Hochberg (9). Benjamini and 
Hochberg’s method assumes independent tests and sets an upper bound for the FDR by a 
step-up or step-down procedure applied to individual P values.  In this method, the 
calculated P values of each independent test are ordered from P(1) being the most 
significant to P(n) being the least significant.  The analyst can then formulate a rule R 
that will specify when a null hypothesis is rejected. For example, R could be set as: 
“Reject Hi if Pi is among the smallest 1% of the P-values and Pi ≤ 0.001”. Benjamini and 
Hochberg were then able to prove that the FDR of R is the expected proportion of 
rejected Hi that were actually true. They identified an algorithm that allows the 
specification of a preset value α which serves as the upper bound of the FDR of R where 
FDR (R α) ≤ α. The analyst can therefore use R as a measure of significance and be 
assured that the FDR from using R will be less than or equal to the preset value α derived 
from Bejamini and Hochberg’s algorithm.  
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Another method is the positive false-discovery rate (pFDR) proposed by Storey 
(10). It multiplies the FDR by a factor Π0, which is the estimated proportion of non-
differentially expressed genes among all the studied genes. It has been found that the 
FDR criteria or its variants allow for a higher false positive rate than FWER procedures, 
and can therefore be a valuable alternative when more stringent analyses fail to identify 
potential leads.   

 
Methods for Differential Analysis 
 Most methods that have been proposed to assess differential analysis are based on 
using the two-sample t-test or a minor variation of the t-statistic, but they differ in how to 
associate a. statistical significance level (p) to the corresponding summary statistic. As 
mentioned in the previous section, differences in how a significance level is assigned 
could lead to possibly large differences in the numbers of genes detected and the number 
of false-positives and false negatives.  For analysts to choose between different statistical 
methods, it is important that they understand the various modeling assumptions 
underlying each method, particularly in relation to how each method determines the 
corresponding significance level or p-value associated with the test statistic.  
 
The t-Test 

A straightforward method is the traditional t-test. Suppose that Yij is the 
expression level of gene i in array j. i can take on the values (1, 2, 3, …, n) depending on 
the number of genes one is interested in.  Values of  j can equal  1, …, J1 where J1 is the 
sample size or number of repetitions under one condition, for example, the control 
(normal) condition, and j = J1+1,  . . ., J2 is the sample size or number of repetitions 
under a different experimental (tumor) condition. A general statistical function is  

Yij = ai + bixj + εij 
where xj = 0 for array j where 1 < j < J1 from the normal group,  and xn=1 for array j  
from the tumor group.  ai  and  (ai + bi) are therefore the mean expression levels of gene i 
under the control and experimental conditions, respectively. To determine if a particular 
gene is differentially expressed, one must test the null hypothesis: 

H0: ai + bi = ai (or bi = 0) against the alternative H1: bi ≠ 0. 
There are several versions of the t-test, depending on whether the sample size is 

large and whether it is reasonable to assume that the gene expression levels have an equal 
variance under the two conditions.  To test whether gene i is differentially expressed 
under the two conditions, we can take the sample means Yi1 and Yi2    where   

                  

Eq. (1) 

and their corresponding variances s2
i1 and s2

i2. in order to get the  t-statistic: 
 

 

Eq. (2) 
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The resulting t-statistic can be used to determine which genes are significantly 
differentially expressed given a particular p-value.  The p-value is usually calculated 
based on the distribution of the test statistic under the null hypothesis (also referred to as 
the null distribution of the test statistic) which may be specified or estimated via different 
modeling assumptions. Under the normality assumption for Yij, ti approximately has a t-
distribution with degrees of freedom di = J1 + J2 – 2 under a standard t-test. A problem 
with the standard t-test is that it assumes that gene expression levels have equal variances 
under the two conditions (eg, tumor and normal cells). Because the sample sizes J1 and 
J2 are often small in microarray experiments, there is evidence to support unequal 
variances, making the standard t-test not an ideal method (11). A simple t-test specifically 
designed to handle the possibility of having unequal variances is the Welch t-test.  The 
Welch t-test, like the standard t-test, also requires the assumption that Yij is normally 
distributed but allows for unequal variances under the two conditions. Under this 
assumption, the distribution of ti can be approximated with degrees of freedom di equal to  

 

Eq. (3) 

 
When t exceeds a certain threshold depending on the confidence level selected, 

the two populations are considered to be different. The Welch t-test has been found to 
have a relatively good performance compared with other alternative t-tests, such as the 
standard t-test. (12). A problem with the standard- and Welch t-test is that they often have 
low power because of the small sample size. In addition, the variances estimated from 
each gene are not stable; for example, if the estimated variance for one gene is small, the 
t value can, simply by chance, be large even when the corresponding fold change is 
small. The fundamental problems of the t-statistic as defined are the normality 
assumptions imposed a priori and  that it is subject to large fluctuations given small 
changes in the error variance SEi, the square root of which gives the denominator of the t-
statistic as shown in Eq. 1 (13). 
 
Variations of the t-test 
     Modifications of the t-test have been proposed to address the difficulty in estimating 
the error variance which is subject to erratic fluctuations in various sample sizes. For 
simplicity, in this section, I will assume that we have a series of n replicate arrays and are 
interested in knowing whether a particular gene is differentially expressed. We let M be the 
log differential expression ratio log2 R/G for each spot and  be the mean log ratio of the 
expression levels of the gene in question.  A simplified version of Eq. 2 of the t-statistic is 
therefore 

 
 
where s is the standard deviation of the log differential expression ratio across the replicates 
for a particular gene.  

Lonnstedt and Speed (14) adopted a parametric empirical Bayes approach 
whereby they produced a B-statistic that serves as an estimate of the log posterior odd 
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ratio of differential expression versus non-differential expression. The B-statistic could 
be seen as a variant of a penalized t-statistic where  

 

Eq. (5) 

with a equals the penalty estimated from the mean and standard deviation of the sample 
variances s2.  The B-statistic is essentially the logarithm of a ratio of probabilities where 
the numerator is the probability that the gene is differentially expressed and the 
denominator is the probability that the gene is not differentially expressed. Both 
probabilities are estimated using the entire data and are called posterior probabilities, thus 
the reference that the B-statistic is a logarithm of the posterior odds of differential 
expression. An advantage of the B-statistic is that it allows for gene-specific variances 
while also combining information across many genes, making it a more stable estimate 
than the ordinary t-statistic.  However, a shortcoming of the B-statistic is that it is subject 
to the validity of several parametric assumptions regarding the data. 

Tusher, Tibshirani, and Chu (7) have proposed the significance analysis of 
microarrays’ (SAM) version of the t-tests which uses penalized t-statistics of the form 

 

Eq. (6) 

where the penalty a is a small positive constant. Tusher et al.’s model used an a that 
minimizes the coefficient of variation of the absolute t-values  

 The SAM version of the t-test differs from the one proposed by Lonnstedt and 
Speed in that the penalty is applied to the sample standard deviation s, rather than to the 
sample variance s2. SAM identifies genes with statistically significant changes in 
expression by assimilating information from a set of gene-specific t-tests (7). Each gene 
is assigned a score on the basis of its change in gene expression relative to the standard 
deviation of repeated measurements for that gene. With this modification, genes with 
small fold changes will not be selected as significant. To “increase” the sample sizes, 
Tusher et al. computed relative differences from permutations of each of their 
hybridizations. They were then able to calculate the expected relative difference dεi which 
is defined as the sum of the largest relative differences of each permutation over the total 
number of permutations. Essentially, the expected relative difference equals to the 
average relative difference over all the permutations. Potentially significant genes with 
differential expression were identified by plotting the observed relative difference of the 
gene di vs the expected relative difference dεi. The resulting “SAM plot” will show that 
most genes are located along the line di =  dεi . Genes displaced from the line di =  dεi by a 
distance greater than some threshold value ∆ were then considered ‘significant’. They 
initially set ∆=1.2 as their baseline estimate, but had also calculated the difference 
between the number of genes assessed as significant and the number of false positives for 
decreasing ∆’s. Essentially, SAM derives the P value for each gene from permutations of 
the available experimental data  

To identify the false discovery rate, horizontal cutoffs cut up (∆)  and cut low (∆)  
were defined such that cut up (∆)   is the smallest di among genes that are significantly 
induced and cut low (∆)   is the least negative di among genes that are significantly 
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repressed. The number of falsely significant genes corresponding to each permutation 
was computed by counting the number of genes that exceeded the horizontal cutoffs for 
induced and repressed genes. By defining the cutoffs according to the information 
presented by the data itself, SAM allows for asymmetric cutoffs for induced and 
repressed genes. Such flexibility offers advantages not available in standard t-tests which 
impose symmetric horizontal cutoffs for both induced and repressed genes, disregarding 
the possibility that induced and repressed genes may behave differently under certain 
experimental conditions. 

An example of a SAM plot is shown in Figure 1 taken from Tusher et al.’s 2001 
article (7).   The figure depicts the scatter plot of the observed relative difference di 
versus the expected relative difference dεi. The solid line represents the group of genes 
where di = dεi., and the dotted lines are drawn at a distance ∆ from the solid line. Points 
indicated by squares in the plot represent potentially significant genes.   

 
 
 

 
Regression Modeling Approach 

Thomas, Olson, Tapscott, and Zhao (16) proposed a regression modeling 
approach where the constants ai and bi from Eq. 1 

 
Yij = ai + bixn + ε ij 

 
are derived using a weighted least squares method, and the variance of bi was estimated 
using the robust variance estimator.  Their test statistic is  
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across a small number of replicates, a more robust estimate of variance is obtained by 
pooling genes with similar expression levels. The Bayesian approach incorporates the 
observation that a reciprocal relationship exists between variance and gene expression 
levels, and that genes expressed in similar levels exhibit similar variance.   
Baldi and Long’s regularized t-test 
 Baldi and Long (18) developed a Bayesian statistical framework that regularizes 
the t-test in order to account for small sample sizes/ number of replications. The 
regularized t test combines information from gene-specific and global average variance 
estimates by using a weighted average of the two as the denominator for a gene-specific t 
test. The regularized t-statistic has the form: 

 

Eq. (10) 

 
where v0 is a tunable parameter that determines the relative contributions of gene-specific 
and global variances and n is the number of replicate measurements for each condition.  
They first assumed that the expression-level measurements of a gene in a given situation 
have a roughly Gaussian distribution and that each observation is independent of the 
others. Other distributions could also be used and still retain the general Bayesian 
framework that they proposed. They then calculate the likelihood of the data D 
conditioned on the background information (based on their distribution assumption) that 
the mean and standard deviations of the expression-level of the gene follow a normal 
distribution. Because a Bayesian approach requires the introduction of a prior distribution 
P(µ, σ2), Baldi and Long assumed that the prior and the posterior have the same function 
form, and therefore used a conjugate prior α for their model. Use of the conjugate prior  
allowed them to apply the Bayes theorem to get the posterior distribution. An advantage 
of using a conjugate prior is that it is convenient and it allows for the possibility that µ, σ2 

are not independent. From the above assumptions, they were able to derive the 
distribution of the posterior, P(µ, σ2|D, α),  which combines all the information from the 
prior and the data D. Using this distribution, they were able to find the mean, degrees of 
freedom, and sum of squares of the posterior, all of whose formulas are listed in their 
paper. In this discussion, I will focus only on how the posterior mean µn was derived and 
how it can be used in assessing whether a gene is differentially expressed. 

Before they are able to derive the mean µn of the posterior, Baldi and Long had to 
specify a prior mean µ0. which they assumed to be equal to the sample mean, m. The 
posterior mean was then found to be the convex weighted average of the sample mean 
and the prior mean. The resulting posterior distribution P(µ, σ2|D, α),  contains all the 
relevant information about all possible values of µ and σ2. One can then get single point 
estimates of  µ and σ2  of the control and treatment group and derive various information 
such as computing for a more robust estimation of the variance or to find the probability 
P(µc = µt|D, αt, αc).  The regularized t-test approach has been implemented in a web-based 
program called CyberT .   The default point estimate used in CyberT is the mean of the 
posterior estimate derived from the posterior distribution where: 
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Artifacts and flaws in experimental design, such as channel-specific variabilities 
and confounding of treatment effect with dyes have led to the rise of mixed models to 
account for limitations in microarray technologies and their applications (19). Their 
general form allows for the testing of effects of any identifiable source of variability. 
Unfortunately, this strength of a mixed model approach is also its weakness: the mixed-
model approach has been criticized on the grounds that it attempts to estimate too many 
parameters from sparse data. However, certain adaptations that can be applied to 
minimize potential problems of a mixed-model approach have been described.  

 
MDSS Algorithm 

The Maximum Difference Subset (MDSS) algorithm developed by Weiler, Patel, and 
Bhattacharya (19), combines cluster analysis, classical statistical tests and machine 
learning in a way that incorporates classification accuracy into the criterion for finding 
differentially expressed genes.  The MDSS approach consists of the following steps:  

1) Perform a classical statistical test (e.g., a t-test) for each gene in the two sample 
groups (e.g., normal vs. tumor). 

2) Rank each gene in descending order according to the magnitude of the measure 
(e.g. t-statistic for a t-test) and find the largest threshold value of the measure that 
succeeds in discriminating between the two groups. For example, find the largest 
significance level that succeeds in discriminating between the tumor and normal 
group. This gene set is called the ‘initial MDSS’.  

3) Remove individual samples from the total set and store a list of genes that are 
significant beyond the threshold value. Continue to remove individual samples 
and create new lists of genes with significance values greater than the threshold 
value. Each new list created after the removal of one sample results in an 
additional individual MDSS list.  

4) Identify the genes that are common to all the individual MDSSs. This gene set is 
assumed to comprise of genes that are differentially expressed between the two 
sample groups and is called the ‘overall MDSS’. This set also passes the critierion 
of predictive utility and may also be used for class classification and prediction. 

5) Use a clustering algorithm to verify if the overall MDSS returns the correct 
classification. Adjust the threshold value in step 2 if the set fails to pass the test 
and do the test again. 

An advantage of the MDSS algorithm is that it learns first at which statistical 
threshold a particular gene set may have, eliminating the arbitrariness associated with 
setting a threshold of statistical significance, say, of alpha = 0.05.  The MDSS approach 
also minimizes the effect of the normality assumption inherent in t-tests. 

 
Conclusion 

The statistics literature on microarray data analysis is quite recent and the search for 
more powerful statistical methods remains an area of active research. This paper 
reviewed some of the statistical methods that have been proposed to address the problems 
that are quite unique to the nature of microarray experimentation and data analysis.  The 
advent of microarray technologies brought with it the power to retrieve large amounts of 
information at a relatively short period of time. It also brought forth the need to find 
reliable methods that could sift through the enormous amount of information retrieved to 
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gain a better understanding of the data and the problem at hand. The methods discussed 
in this paper could be seen as initial attempts that address the problem of multiple testing. 
The methods  allow the analyst to assign statistical significance to differentially 
expressed genes without requiring that the restrictive assumptions of standard statistical 
methods be imposed. Ultimately however, statistical methods like the ones discussed that 
focus on the analysis of microarray data alone will most likely be insufficient. Methods 
that allow for the integration of microarray data with other sources of information will 
very likely need to be developed. For example, information from other clinical, patient, 
and experimental records could be combined with data from microarray experiments. 
Continued efforts to increase the power and reliability of statistical methods as well as to 
integrate knowledge from different sources will be necessary to harness the full potential 
of microarray technologies.  
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